文章摘要
2型糖尿病患者远端对称性多发性神经病变发生风险的列线图预测模型的建立与验证
Development and Validation of a Risk Nomogram Model for Predicting Distal Symmetric Polyneuropathy in Patients with Type 2 Diabetes Mellitus
投稿时间:2025-07-21  修订日期:2025-07-21
DOI:
中文关键词: 糖尿病周围神经病变  列线图  预测模型  影响因素
英文关键词: diabetic peripheral neuropathy  nomogram  prediction  influencing factor
基金项目:
作者单位邮编
程凯倩 武汉科技大学附属孝感医院
武汉科技大学医学部医学院 
432000
张方辉 武汉科技大学医学部医学院 
刘培欣 武汉科技大学附属孝感医院武汉科技大学医学部医学院 
梅靖宇 武汉科技大学附属孝感医院武汉科技大学医学部医学院 
孙喆 武汉科技大学附属孝感医院武汉科技大学医学部医学院 
朱钊 武汉科技大学附属孝感医院 
吴敏* 武汉科技大学附属孝感医院 432000
摘要点击次数: 36
全文下载次数: 0
中文摘要:
      目的 本研究旨在探究2型糖尿病(T2DM)患者并发远端对称性多发性神经病变(DSPN)的危险因素,并构建关于DSPN风险的预测列线图模型。方法 选取2021年7月至2024年7月在武汉科技大学附属孝感医院1658例T2DM患者作为研究对象,收集一般资料和临床数据,按7∶3比例将全部数据划分为训练集和验证集。训练集数据采用LASSO回归和二元Logistic回归建立列线图模型,验证集数据进行模型验证。通过校准曲线、受试者工作特征(ROC)曲线下面积、决策曲线(DCA))评价模型的一致性、区分度和临床应用价值。结果 研究发现,糖尿病病程[OR=1.195,95%CI(1.116~1.280)]、空腹血糖(FPG)[OR=1.614,95%CI(1.435~1.816)]、中性粒细胞与淋巴细胞比值(NLR)[OR=1.388,95%CI(1.042~1.849)]、尿微量白蛋白(mALB)[OR=1.536,95%CI(1.113~2.120)]是DSPN的独立危险因素,而高密度脂蛋白胆固醇(HDL-C)[OR=0.252,95%CI(0.160~0.397)]、25-羟基维生素D(25(OH)D)[OR=0.845,95%CI(0.825~0.864)]则是独立保护因素。校准曲线示列线图模型预测DSPN风险概率与实际概率的一致性较好。训练组中列线图预测模型预测DSPN发生的AUC为0.896(95% CI=0.878~0.913),验证组中列线图预测模型预测 DSPN 发生的 AUC 为0.888(95%CI=0.860~0.917)。DCA图显示模型在较大的阈值范围内具有临床应用价值。结论 通过本研究,我们开发了一种基于糖尿病病程、FPG、NLR、mALB、HDL-C和25(OH)D等关键预测因子的高精度列线图预测模型。
英文摘要:
      Objective: This study aims to identify the risk factors associated with distal symmetric polyneuropathy (DSPN) in patients with type 2 diabetes mellitus (T2DM) and to develop a predictive model for assessing the risk of DSPN. Methods: A total of 1,658 eligible T2DM patients were selected from Xiaogan Hospital, affiliated with Wuhan University of Science and Technology, between July 2021 and July 2024. General and clinical data were collected and then split into a training set and a validation set in a 7:3 ratio. LASSO regression and binary logistic regression were employed to develop a nomogram model using the training set data, which was subsequently validated with the validation set data. The model's accuracy, discrimination, and clinical applicability were assessed using calibration curves, the area under the receiver operating characteristic (ROC) curve, and decision curve analysis (DCA). Results: The analysis identified duration of diabetes [OR=1.195, 95%CI:1.116-1.280], fasting blood glucose (FPG) [OR=1.614, 95%CI:1.435-1.816], neutrophil-to-lymphocyte ratio (NLR) [OR=1.388,95%CI:1.042-1.849] and urinary microalbumin (mALB) [OR=1.536, 95%CI:1.113-2.120] as independent risk factors for DSPN. Conversely,high-density lipoprotein cholesterol(HDL-C)[OR=0.252, 95%CI:0.160-0.397] and 25-hydroxyvitamin D[25(OH)D] [OR=0.845, 95% CI:0.825-0.864] were identified as independent protective factors. The nomogram model's predicted DSPN risk probability closely aligned with the actual probability, as demonstrated by the calibration curve. The area under the curve (AUC) for DSPN prediction was 0.896 (95%CI:0.878-0.913) in the training group and 0.888 (95%CI:0.860-0.917) in the validation group. The decision curve analysis (DCA) indicated that the model holds significant clinical value across a wide range of thresholds. Conclusion: This study successfully developed a highly accurate nomogram prediction model based on key predictors, including diabetes duration, FPG, NLR, mALB, HDL-C, and 25(OH)D. The application of this model can significantly enhance the early detection of high-risk DSPN patients and optimize their management and treatment strategies, ultimately improving their quality of life.
View Fulltext   查看/发表评论  下载PDF阅读器
关闭