文章摘要
娄嫣云 ,贺玉琴 ,刘幸华 ,郝嘉欢 ,余颖 ,汪明欢 ,吴莹莹.一种基于DeepLabCut算法的便捷式步态分析系统的 建立及其在中枢神经系统疾病模型中的应用[J].神经损伤功能重建,2024,(12):700-705
一种基于DeepLabCut算法的便捷式步态分析系统的 建立及其在中枢神经系统疾病模型中的应用
Establishment of a Convenient Gait Tracking and Analyzing System Based on the DeepLabCutAlgorithm and Its Application in Central Nervous System Disease Models
  
DOI:
中文关键词: 步态分析  DeepLabCut  阿尔茨海默病  抑郁  慢性脑缺血  脓毒血症相关性脑病
英文关键词: gait analysis  DeepLabCut  Alzheimer’s disease  depression  chronic cerebral ischemia  sepsis-associated encepholopathy
基金项目:国家自然科学基 金项目(mLVs-Gly mphatic 系统在急 性脑梗塞后神经 血管单元损伤与 功能重塑中的作 用 及 机 制 研 究 , No. 82271355; TREM2 介导小胶 质细胞活化状态 在慢性低灌注脑 白质缺血后结构 与功能重塑中的 作用及机制研究, No. 82101404;抑 制 CCL8-CCR2 调 控 PVM 介导脑血 管内皮细胞间质 转化及动脉硬化 的机制,No. 82301 509)
作者单位
娄嫣云a ,贺玉琴a ,刘幸华b ,郝嘉欢a ,余颖a ,汪明欢a ,吴莹莹c 华中科技大学同 济医学院附属同 济医院 a.神经内 科b.创伤外科c. 肿瘤科 
摘要点击次数: 180
全文下载次数: 137
中文摘要:
      目的:开发一种基于深度学习技术的便捷式步态跟踪系统用于检测实验鼠步态细节,并初步检测其在 野生型小鼠和多种中枢神经系统疾病小鼠模型中的应用。方法:搭建简便的步态走廊,将小鼠放入走廊内自 由行走4 min,从腹侧记录小鼠步行视频。从小鼠自由运动的视频中抽取120帧,使用DeepLabCut分析动物 的运动,标记36个身体部位用于神经网络训练。应用该系统及网络对1、3、6和18月龄的野生型小鼠、APP/ PS1小鼠(6月龄,阿尔茨海默病模型)、社会孤立(social isolation,SI)小鼠(3月龄,焦虑抑郁模型)、双侧颈动 脉狭窄(bilateral carotid artery stenosis,BCAS)小鼠(3月龄,慢性脑缺血模型)和手术造模后1、3、7天的脓毒 血症相关性脑病(sepsis-associated encephalopathy,SAE)小鼠(2月龄)的步态进行分析。结果:利用DeepLabCut可以在所有动物视频追踪中,展现出很高的准确性。3月龄野生型小鼠相比其他月龄小鼠运动速度最快, 步幅提高。APP/PS1小鼠运动速度显著高于同龄对照,并伴有步幅增加和站立时间减少。SI小鼠步幅缩短, 左前爪脚趾展开度和脚趾展开角度减小,提示存在脚爪姿势改变。BCAS小鼠在步幅上没有显著改变,但后 肢脚趾展开度显著增大,脚趾展开角减小。SAE小鼠在术后1、3天运动速度下降,伴有步幅缩短和站立时间 延长;术后7天运动速度低于对照小鼠但无显著差异,后肢脚趾展开度和脚趾展开角度小于对照组。结论: 本研究搭建了基于深度学习的、便捷、低成本的步态分析设备,只需少量工作即可标记感兴趣的身体部位,比 以往的步态分析方法更节省成本。应用这一设备描述了野生型小鼠各年龄组的步态特征,并证明阿尔茨海 默病、焦虑抑郁状态、慢性脑缺血和脓毒血症相关性脑病模型小鼠表现出步态缺陷。
英文摘要:
      To develop a convenient and low-cost gait tracking system based on deep learning technology for detecting gait details in experimental mice, and to preliminarily test its application in wild-type mice and various central nervous system disease mouse models. Methods: A simple gait corridor was built, and mice were allowed to walk freely inside the corridor for 4 minutes while their walking videos were recorded from the ventral side. From the free movement videos of the mice, 120 frames were extracted and analyzed using DeepLabCut to label 36 body parts for neural network training. The system and network were applied to analyze the gait of wild-type mice at ages 1, 3, 6, and 18 months, APP/PS1 mice (6 months old, Alzheimer’s disease model), social isolation (SI) mice (3 months old, anxiety and depression model), bilateral carotid artery stenosis (BCAS) mice (3 months old, chronic cerebral ischemia model), and sepsis-associated encephalopathy (SAE) mice at postoperative days 1, 3, and 7 (2 months old). Results: DeepLabCut demonstrated high accuracy in all animal video tracking. Three-month-old wild-type mice had the fastest movement speed and increased stride length compared to other age groups. APP/PS1 mice showed significantly higher movement speed than age-matched controls, accompanied by increased stride length and decreased standing time. SI mice exhibited shortened stride length, reduced toe spread and toe angle of the left front paw, indicating foot posture changes. BCAS mice showed no significant change in stride length but had significantly increased hind limb toe spread and decreased toe angle. SAE mice showed reduced movement speed with shortened stride length and extended standing time on postoperative days 1 and 3. By day 7 post-operation, SAE mice had lower movement speed than control mice but without significant difference, and had smaller hind limb toe spread and toe angle compared to the control group. Conclusion: This study established a convenient, low-cost gait analysis device based on deep learning, requiring minimal effort to label body parts of interest, making it more cost-effective than previous gait analysis methods. Using this device, we described the gait characteristics of wild-type mice across different age groups and demonstrated that mice models of Alzheimer’s disease, anxiety and depression, chronic cerebral ischemia, and sepsis-associated encephalopathy exhibit gait deficits.
查看全文   查看/发表评论  下载PDF阅读器
关闭