文章摘要
刘潺潺 ,李婷 ,王钟情 ,张立波 ,吴本清 ,朱勇 ,张丽华 ,王清勇.西格列汀通过糖原合酶激酶-3β通路调控阿尔茨海默病[J].神经损伤功能重建,2024,(4):187-191
西格列汀通过糖原合酶激酶-3β通路调控阿尔茨海默病
Sitagliptin Regulates Alzheimer’s Disease through the Glycogen Synthase Kinase-3β Pathway
  
DOI:
中文关键词: 阿尔茨海默病  西格列汀  多奈哌齐  细胞因子
英文关键词: Alzheimer’s disease  sitagliptin  donepezil  cytokines
基金项目:广东省医学科学技 术研 究 基 金 项 目 (基于GSK-3β信号 通路探索西格列汀 调控阿尔茨海默病 机制,No. A202255 0)
作者单位
刘潺潺a ,李婷b ,王钟情a ,张立波a ,吴本清c ,朱勇a ,张丽华a ,王清勇a 深圳市光明区人民 医院 a.神经内科 b.急诊科c.新生儿 科 
摘要点击次数: 1029
全文下载次数: 1089
中文摘要:
      目的:探索西格列汀通过糖原合酶激酶-3β(GSK-3β)通路调控阿尔茨海默病(AD)的机制。方法:72 只大鼠随机分为9组第I组(对照组):口服饮用水8 周;第II组(假手术):第1天,大鼠双侧脑室内各输注4 μL 人工脑脊液;第III组(Aβ1-42):第1天大鼠大脑双侧脑室内各输注4 μg Aβ1-42;第IV、V、VI组(Aβ1-42+西格 列汀):第1天,大鼠双侧海马输注4 μg Aβ1-42,然后口服不同剂量的西格列汀8周(第IV、V、VI组西格列汀 的剂量分别为1 mg/kg、2 mg/kg、3 mg/kg);第VII组(西格列汀):口服西格列汀(1 mg/kg)8 周;第VIII组(Aβ 1-42+多奈哌齐):第1天,大鼠双侧脑室内输注4 μg Aβ1-42,然后口服多奈哌齐(1 mg/ kg)8周;第IX组(多奈 哌齐):口服多奈哌齐(1 mg/ kg)8 周。造模完成后,采用Morris水迷宫测试各种大鼠记忆功能。再处死大 鼠,分别测定各组大鼠海马中的胰高血糖素样肽-1(GLP-1)、可溶性 Aβ1-42、胰岛素受体底物-1(IRS-1) (s307)、GSK-3β、乙酰胆碱酯酶(AChE)、过氧化氢酶(CAT)、促炎细胞因子白细胞介素-6(IL-6)、IL-1β和肿瘤 坏死因子-α(TNF-α)的水平;行海马HE和刚果红染色,进行病理分析。结果:水迷宫测试结果显示,AD模型 组(III组)大鼠的找台时间和游泳距离均高于假手术组(II组)(均P<0.001);海马GLP-1水平、CAT水平低于 假手术组(II组)(P<0.01),可溶性Aβ1-42、GSK-3β、IL-6、IL-1β、TNF-α水平均高于假手术组(II组)(均P< 0.01);HE和刚果红染色结果显示AD模型组(III组)细胞浸润性斑块物质较多,有典型的淀粉样蛋白沉积。 高剂量(3 mg/kg)西格列汀AD模型组(VI组)和多奈哌齐AD模型组(VIII组)大鼠的找台时间和游泳距离均 低于其他模型组(均 P<0.001);大鼠海马 GLP-1 水平、CAT 水平高于其他模型组(均 P<0.05),可溶性 Aβ 1-42、GSK-3β、IL-6、IL-1β、TNF-α水平,IRS-1和IRS-1(s307)表达水平,AChE水平均低于其他模型组(均P< 0.05);高剂量西格列汀AD模型组(VI组)大鼠海马的GLP-1水平高于多奈哌齐AD模型组(VIII组)、TNF-α 水平低于多奈哌齐AD模型组(VIII组);HE和刚果红染色结果显示高剂量西格列汀AD模型组(VI组)和多 奈哌齐AD模型组(VIII组)浸润性物质较AD模型组(III组)减少,细胞偏向正常,细胞质嗜酸性染色较少,淀 粉样蛋白沉积减少。结论:口服8 周西格列汀(3 mg/kg)可改善AD大鼠记忆功能,减轻大脑胰岛素抵抗、减 轻炎症反应、减少海马神经元的AD样改变,其机制可能与调控GSK-3β信号通路有关。
英文摘要:
      To explore the mechanism by which sitagliptin regulates Alzheimer’s disease (AD) through the glycogen synthase kinase-3β (GSK-3β) pathway. Methods: 72 rats were randomly divided into 9 groups. Group I (control): oral drinking water for 8 weeks; Group II (sham operation): on day 1, each lateral ventricle of the rat was infused with 4 μL artificial cerebrospinal fluid; Group III (Aβ1-42): on day 1, each lateral ventricle of the rat brain was infused with 4 μg Aβ1-42; Groups IV, V, VI (Aβ1-42+sitagliptin): on day 1, each hippocampus of the rat was infused with 4 μ g Aβ 1-42, then orally administered different doses of sitagliptin for 8 weeks (the doses of sitagliptin for Groups IV, V, and VI were 1 mg/kg, 2 mg/kg, and 3 mg/kg respectively); Group VII (sitagliptin): orally administered sitagliptin (1 mg/kg) for 8 weeks; Group VIII (Aβ1-42+donepezil): on day 1, each lateral ventricle of the rat was infused with 4 μg Aβ1-42, then orally administered donepezil (1 mg/kg) for 8 weeks; Group IX (donepezil): orally administered donepezil (1 mg/kg) for 8 weeks. After modeling was completed, the memory function of various rats was tested using the Morris water maze. The rats were then sacrificed, and the levels of glucagon-like peptide-1 (GLP-1), soluble Aβ1-42, insulin receptor substrate-1 (IRS-1) (s307), GSK-3 β, acetylcholinesterase (AChE), catalase (CAT), proinflammatory cytokines interleukin-6 (IL-6), IL-1 β, and tumor necrosis factor-α (TNF-α) in the hippocampus of each group were determined; hippocampal HE and Congo red staining were performed for pathological analysis. Results: Water maze test results showed that the platform finding time and swimming distance of rats in the AD model group (Group III) were higher than those in the sham operation group (Group II) (both P<0.001); the levels of hippocampal GLP-1 and CAT were lower than those in the sham operation group (Group II) (P<0.01), and the levels of soluble Aβ1-42, GSK-3β, IL-6, IL-1β, TNF-α were all higher than those in the sham operation group (Group II) (all P<0.01); HE and Congo red staining results showed that the AD model group (Group III) had more cellular infiltration plaque material and typical amyloid protein deposition. The platform finding time and swimming distance of rats in the high-dose (3 mg/kg) sitagliptin AD model group (Group VI) and donepezil AD model group (Group VIII) were lower than those in other model groups (both P<0.001); the levels of rat hippocampal GLP-1 and CAT were higher than those in other model groups (both P<0.05), and the levels of soluble Aβ1-42, GSK-3β, IL-6, IL-1β, TNF-α, IRS-1, and IRS-1(s307) expression, and AChE were all lower than those in other model groups (all P<0.05); the level of GLP-1 in the hippocampus of rats in the high-dose sitagliptin AD model group (Group VI) was higher than that in the donepezil AD model group (Group VIII), and the level of TNF-α was lower than that in the donepezil AD model group (Group VIII); HE and Congo red staining results showed that the infiltration material in the hippocampus of rats in the high-dose sitagliptin AD model group (Group VI) and donepezil AD model group (Group VIII) was reduced compared to the AD model group (Group III), cells were more normal, cytoplasmic acidophilic staining was less, and amyloid protein deposition was reduced. Conclusion: Oral administration of sitagliptin (3 mg/kg) for 8 weeks can improve the memory function of AD rats, reduce brain insulin resistance, alleviate inflammatory response, and reduce AD-like changes in hippocampal neurons, which may be related to the regulation of the GSK-3β signaling pathway.
查看全文   查看/发表评论  下载PDF阅读器
关闭